If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-15t^2+135t+10=0
a = -15; b = 135; c = +10;
Δ = b2-4ac
Δ = 1352-4·(-15)·10
Δ = 18825
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{18825}=\sqrt{25*753}=\sqrt{25}*\sqrt{753}=5\sqrt{753}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(135)-5\sqrt{753}}{2*-15}=\frac{-135-5\sqrt{753}}{-30} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(135)+5\sqrt{753}}{2*-15}=\frac{-135+5\sqrt{753}}{-30} $
| 4^x+3=1/2^x | | 106=8g+12 | | 12/7=15/2x+1 | | 9(x+7)=16x-63 | | 3(x+1)=3x-8 | | 3x^2+24x-103=0 | | 9(x+1)=9x-7 | | x+121+90=180 | | (+x^2+4x-3x-12)(+x^2+x-6x-6)=0 | | 6(x+1)=6x-2 | | x+90=121 | | 8(x-6)=14x+48 | | x+x=121+180 | | 60=50+n-4/40 | | x+x=121+90 | | x+x=121 | | x=121-90 | | x=121+90 | | 91=(2x-3)(2x+3) | | 16s^2+40=-25 | | (x+-6)+6=4x-9 | | x=90+121 | | x+121=90 | | x=121+180 | | 8(x-3)-8=-32 | | 2(6h-9)=-24 | | 18x-3=14x-11 | | 5x-2x+7=3x+2+3 | | 50,000=50(.25x-x) | | 8x+22=6x+14 | | x^2-48x-128=0 | | 14x-8+2x-4=13x-4+2x |